October 5, 2024

Holistic Pulse

Healthcare is more important

A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation

A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation
  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Y. et al. A pangenome reference of 36 Chinese populations. Nature 619, 112–121 (2023).

  • Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, T., Shu, Y. & Cai, Y.-D. Genetic differences among ethnic groups. BMC Genomics 16, 1093 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gest, H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes Rec. R. Soc. Lond. 58, 187–201 (2004).

    Article 
    PubMed 

    Google Scholar 

  • The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).

    Article 

    Google Scholar 

  • Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).

  • The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article 
    PubMed Central 

    Google Scholar 

  • MetaHIT Consortium. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article 
    PubMed Central 

    Google Scholar 

  • Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article 
    PubMed 

    Google Scholar 

  • MetaHIT Consortium. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article 

    Google Scholar 

  • MetaHIT Consortium (additional members). et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

  • MetaHIT consortium. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article 
    PubMed Central 

    Google Scholar 

  • McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • López-Otín, C. & Kroemer, G. Hallmarks of Health. Cell 184, 33–63 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Schmauck-Medina, T. et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging 14, 6829–6839 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rackaityte, E. & Lynch, S. V. The human microbiome in the 21st century. Nat. Commun. 11, 5256 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brodin, P. Immune-microbe interactions early in life: a determinant of health and disease long term. Science 376, 945–950 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Role of the gut microbiota in nutrition and health. BMJ 361, k2179 (2018).

  • Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martino, C. et al. Microbiota succession throughout life from the cradle to the grave. Nat. Rev. Microbiol. 20, 707–720 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ayres, J. S. Cooperative microbial tolerance behaviors in host-microbiota mutualism. Cell 165, 1323–1331 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clemente, J. C., Manasson, J. & Scher, J. U. The role of the gut microbiome in systemic inflammatory disease. BMJ 360, j5145 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J.-Y., Tsolis, R. M. & Bäumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Superorganism. in Biophilia 23–38 (Harvard University Press, 1984). https://doi.org/10.4159/9780674045231-003.

  • Bell, G. Model metaorganism. Science 282, 248–248 (1998).

    Article 
    CAS 

    Google Scholar 

  • Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028–16 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. M. & Hazen, S. L. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66, 343–359 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bach, J.-F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat. Rev. Immunol. 18, 105–120 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rook, G. A. W. A Darwinian View of the Hygiene or “Old Friends” Hypothesis: When urban living reduced contacts of humans with microbes and worms, it increased our risk for chronic inflammatory disorders. Microbe Mag. 7, 173–180 (2012).

    Google Scholar 

  • Noverr, M. C. & Huffnagle, G. B. The ‘microflora hypothesis’ of allergic diseases. Clin. Exp. Allergy 35, 1511–1520 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quagliariello, A. et al. Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture. Nat. Commun. 13, 6927 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, T. A. et al. Codiversification of gut microbiota with humans. Science 377, 1328–1332 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rook, G., Bäckhed, F., Levin, B. R., McFall-Ngai, M. J. & McLean, A. R. Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521–530 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sharp, C. & Foster, K. R. Host control and the evolution of cooperation in host microbiomes. Nat. Commun. 13, 3567 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hector, T. E., Hoang, K. L., Li, J. & King, K. C. Symbiosis and host responses to heating. Trends Ecol. Evol. 37, 611–624 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Frazão, N. et al. Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations. Nat. Commun. 13, 5604 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barreto, H. C. & Gordo, I. Intrahost evolution of the gut microbiota. Nat. Rev. Microbiol. 21, 590–603 (2023).

  • The NIH HMP Working Group. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).

    Article 
    PubMed Central 

    Google Scholar 

  • Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. 108, 4592–4598 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clifford, A. & Hoffman, G. S. Evidence for a vascular microbiome and its role in vessel health and disease. Curr. Opin. Rheumatol. 27, 397–405 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hidi, L. et al. Human blood vessel microbiota in healthy adults based on common femoral arteries of brain-dead multi-organ donors. Front. Cell. Infect. Microbiol. 12, 1056319 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, C. C. S. et al. No evidence for a common blood microbiome based on a population study of 9770 healthy humans. Nat. Microbiol. 8, 973–985 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, L. J. & Liu, J. Human microbiota and ophthalmic disease. Yale J. Biol. Med. 89, 325–330 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ozkan, J. et al. Biogeography of the human ocular microbiota. Ocul. Surf. 17, 111–118 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lyon, J. Even the eye has a microbiome. JAMA 318, 689 (2017).

    PubMed 

    Google Scholar 

  • St. Leger, A. J. et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ t cells. Immunity 47, 148–158.e5 (2017).

    Article 
    PubMed Central 

    Google Scholar 

  • Castellani, G., Croese, T., Peralta Ramos, J. M. & Schwartz, M. Transforming the understanding of brain immunity. Science 380, eabo7649 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Servick, K. Do gut bacteria make a second home in our brains? Science (2018).

  • Link, C. D. Is there a brain microbiome? Neurosci. Insights 16, 263310552110187 (2021).

    Article 

    Google Scholar 

  • Molinero, N. et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 7, 100 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Younge, N. et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight 4, e127806 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hornef, M. & Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 10, 598–601 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409.e20 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Muñoz, M. E., Arrieta, M.-C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, K. M. et al. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 6, 865–873 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. 107, 11971–11975 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCallum, G. & Tropini, C. The gut microbiota and its biogeography. Nat. Rev. Microbiol. 22, 105–118 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8 (2016).

  • Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folz, J. et al. Human metabolome variation along the upper intestinal tract. Nat. Metab. 5, 777–788 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • She, J.-J. et al. Defining the biogeographical map and potential bacterial translocation of microbiome in human ‘surface organs’. Nat. Commun. 15, 427 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sampaio-Maia, B. & Monteiro-Silva, F. Acquisition and maturation of oral microbiome throughout childhood: an update. Dent. Res. J. 11, 291–301 (2014).

    Google Scholar 

  • Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. (Praha) 61, 423–429 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, X., Luo, J., Zhang, P. & Howell, K. The salivary microbiome shows a high prevalence of core bacterial members yet variability across human populations. Npj Biofilms Microbiomes 8, 85 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • NISC Comparative Sequencing Program. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article 
    PubMed Central 

    Google Scholar 

  • Saheb Kashaf, S. et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 7, 169–179 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Harris-Tryon, T. A. & Grice, E. A. Microbiota and maintenance of skin barrier function. Science 376, 940–945 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yildirim, S. et al. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME J. 8, 2431–2444 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Łaniewski, P. & Herbst-Kralovetz, M. M. Connecting microbiome and menopause for healthy ageing. Nat. Microbiol. 7, 354–358 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reid, G. Therapeutic Opportunities in the Vaginal Microbiome. Microbiol. Spectr. 5, 5.3.06 (2017).

    Article 

    Google Scholar 

  • Gliniewicz, K. et al. Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women. Front. Microbiol. 10, 193 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brotman, R. M. et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 21, 450–458 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hillier, S. L. & Lau, R. J. Vaginal microflora in postmenopausal women who have not received estrogen replacement therapy. Clin. Infect. Dis. 25, S123–S126 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, X. et al. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunol. Med. Microbiol. 58, 169–181 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, Y., Chen, L., Tong, J. & Xu, C. Preliminary characterization of vaginal microbiota in healthy Chinese women using cultivation‐independent methods. J. Obstet. Gynaecol. Res. 35, 525–532 (2009).

    Article 
    PubMed 

    Google Scholar 

  • France, M. T. et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome 8, 166 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marconi, C. et al. Characterization of the vaginal microbiome in women of reproductive age from 5 regions in Brazil. Sex. Transm. Dis. 47, 562–569 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borgdorff, H. et al. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS ONE 12, e0181135 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • France, M., Alizadeh, M., Brown, S., Ma, B. & Ravel, J. Towards a deeper understanding of the vaginal microbiota. Nat. Microbiol. 7, 367–378 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muliyil, S. Linking the vaginal microbiome to women’s health. Nat. Med. (2023).

  • Lebeer, S. et al. A citizen-science-enabled catalogue of the vaginal microbiome and associated factors. Nat. Microbiol. 8, 2183–2195 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumpitsch, C., Koskinen, K., Schöpf, V. & Moissl-Eichinger, C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 17, 87 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Natalini, J. G., Singh, S. & Segal, L. N. The dynamic lung microbiome in health and disease. Nat. Rev. Microbiol. 21, 222–235 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pattaroni, C. et al. Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24, 857–865.e4 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, R., Li, J. & Zhou, X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct. Target. Ther. 9, 19 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wypych, T. P., Wickramasinghe, L. C. & Marsland, B. J. The influence of the microbiome on respiratory health. Nat. Immunol. 20, 1279–1290 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315.e12 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fassarella, M. et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 70, 595–605 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630–638 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, X. et al. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe 32, 506–526.e9 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. MIAOME: Human microbiome affect the host epigenome. Comput. Struct. Biotechnol. J. 20, 2455–2463 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapil, V. et al. The noncanonical pathway for in vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway. Pharmacol. Rev. 72, 692–766 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chai, X., Liu, L. & Chen, F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front. Cardiovasc. Med. 11, 1337281 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doel, J. J., Benjamin, N., Hector, M. P., Rogers, M. & Allaker, R. P. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur. J. Oral. Sci. 113, 14–19 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goh, C. E. et al. Nitrite generating and depleting capacity of the oral microbiome and cardiometabolic risk: results from ORIGINS. J. Am. Heart Assoc. 11, e023038 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blekkenhorst, L. C. et al. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am. J. Clin. Nutr. 107, 504–522 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kapil, V. et al. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic. Biol. Med. 55, 93–100 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sommer, F. & Bäckhed, F. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oliphant, K. & Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7, 91 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, J. H. & Round, J. L. SnapShot: Microbiota effects on host physiology. Cell 184, 2796–2796.e1 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beynen, A. C., Buechler, K. F., Van Der Molen, A. J. & Geelen, M. J. H. The effects of lactate and acetate on fatty acid and cholesterol biosynthesis by isolated rat hepatocytes. Int. J. Biochem. 14, 165–169 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshida, H., Ishii, M. & Akagawa, M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch. Biochem. Biophys. 672, 108057 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, G. Y. et al. Propionate promotes gluconeogenesis by regulating mechanistic target of rapamycin (mTOR) pathway in calf hepatocytes. Anim. Nutr. 15, 88–98 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demigné, C. et al. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr. 74, 209–219 (1995).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67, 1269–1279 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trompette, A. et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol. 15, 908–926 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jangi, S. et al. Microbial butyrate capacity is reduced in inflamed mucosa in patients with ulcerative colitis. Sci. Rep. 14, 3479 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, X. et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8 + T cells. Gut 72, 2112–2122 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Tao, Y., Gu, Y. & Ma, Q. Butyrate facilitates immune clearance of colorectal cancer cells by suppressing STAT1-mediated PD-L1 expression. Clinics 78, 100303 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okumura, S. et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat. Commun. 12, 5674 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fogelson, K. A., Dorrestein, P. C., Zarrinpar, A. & Knight, R. The gut microbial bile acid modulation and its relevance to digestive health and diseases. Gastroenterology 164, 1069–1085 (2023).

  • Xie, S. et al. Novel tripeptide RKH derived from Akkermansia muciniphila protects against lethal sepsis. Gut 73, 78–91 (2023).

  • Jiang, J. et al. The gut metabolite indole-3-propionic acid activates ERK1 to restore social function and hippocampal inhibitory synaptic transmission in a 16p11.2 microdeletion mouse model. Microbiome 12, 66 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, M. et al. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab. 36, 1000–1012.e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620.e17 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hosang, L. et al. The lung microbiome regulates brain autoimmunity. Nature 603, 138–144 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oh, E. S. & Petronis, A. Origins of human disease: the chrono-epigenetic perspective. Nat. Rev. Genet. 22, 533–546 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carter, B. & Zhao, K. The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 22, 235–250 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 23, 325–341 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pepke, M. L., Hansen, S. B. & Limborg, M. T. Unraveling host regulation of gut microbiota through the epigenome–microbiome axis. Trends Microbiol. (2024) (2024).

  • Ansari, I. et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat. Microbiol. 5, 610–619 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mattei, A. L., Bailly, N. & Meissner, A. DNA methylation: a historical perspective. Trends Genet 38, 676–707 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crider, K. S., Yang, T. P., Berry, R. J. & Bailey, L. B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for Folate’s role. Adv. Nutr. 3, 21–38 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications—cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davison, J. M. et al. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res. 27, 1195–1206 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nemeth, K., Bayraktar, R., Ferracin, M. & Calin, G. A. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211–232 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Virtue, A. T. et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci. Transl. Med. 11, eaav1892 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, L., Ai, L., Qian, J., Fang, J.-Y. & Xu, J. Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes. Sci. Rep. 5, 11763 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bach, J.-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuehni, C. E., Strippoli, M. F., Low, N. & Silverman, M. Asthma in young South Asian women living in the United Kingdom: the importance of early life. Clin. Exp. Allergy 37, 47–53 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feltbower, R. G. et al. Trends in the incidence of childhood diabetes in South Asians and other children in Bradford, UK. Diabet. Med. 19, 162–166 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bodansky, H. J., Staines, A., Stephenson, C., Haigh, D. & Cartwright, R. Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ 304, 1020–1022 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dean, G. & Elian, M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 63, 565–568 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gale, C. R. & Martyn, C. N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47, 425–448 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strachan, D. Family size, infection and atopy: the first decade of the ‘hygiene hypothesis’. Thorax 55, 2S–10S (2000).

    Article 

    Google Scholar 

  • Finlay, B. B. et al. The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proc. Natl Acad. Sci. 118, e2010217118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, W. The ‘hygiene hypothesis’ for allergic disease is a misnomer. BMJ 349, g5267–g5267 (2014).

    Article 

    Google Scholar 

  • Rook, G. A. W. et al. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springe. Semin. Immunopathol. 25, 237–255 (2004).

    Article 
    CAS 

    Google Scholar 

  • Rook, G. A. W. Microbes, immunoregulation, and the gut. Gut 54, 317–320 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donald, K. & Finlay, B. B. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat. Rev. Immunol. 23, 735–748 (2023).

  • Van Der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-van Der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. (Lond.) 69, 405–411 (1971).

    Article 
    PubMed 

    Google Scholar 

  • Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360. (2022).

  • Bohnhoff, M. & Miller, C. P. Enhanced susceptibility to salmonella infection in streptomycin-treated mice*. J. Infect. Dis. 111, 117–127 (1962).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar 

  • Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanzer, J. M., Kurasz, A. B. & Clive, J. Competitive displacement of mutans streptococci and inhibition of tooth decay by Streptococcus salivarius TOVE-R. Infect. Immun. 48, 44–50 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Hoogmoed, C. G. et al. Reduction of periodontal pathogens adhesion by antagonistic strains. Oral. Microbiol. Immunol. 23, 43–48 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sugimoto, S. et al. Staphylococcus epidermidis esp degrades specific proteins associated with staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 195, 1645–1655 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torres Salazar, B. O. et al. Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus. Nat. Microbiol. 9, 200–213 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King, A. M. et al. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat. Microbiol. 8, 2420–2434 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin, R., Suzuki, M. & Morishita, Y. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J. Med. Microbiol. 51, 201–206 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rolfe, R. D. Role of volatile fatty acids in colonization resistance to Clostridium difficile. Infect. Immun. 45, 185–191 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bohnhoff, M., Miller, C. P. & Martin, W. R. Resistance of the mouse’s intestinal tract to experimental Salmonella infection. J. Exp. Med. 120, 805–816 (1964).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science 309, 1245–1248 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flaugnatti, N. et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat. Commun. 12, 5751 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, B. D. et al. Human gut bacteria contain acquired interbacterial defence systems. Nature 575, 224–228 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. 113, 3627–3632 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell, A. B. et al. A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voravuthikunchai, S. P., Bilasoi, S. & Supamala, O. Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe 12, 221–226 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Turovskiy, Y., Sutyak Noll, K. & Chikindas, M. L. The aetiology of bacterial vaginosis: aetiology of bacterial vaginosis. J. Appl. Microbiol. 110, 1105–1128 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osbelt, L. et al. Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms. Nat. Microbiol. 9, 1792–1811 (2024).

  • Stekel, D. First report of antimicrobial resistance pre-dates penicillin. Nature 562, 192–192 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Varadan, S. R. et al. A just transition for antimicrobial resistance: planning for an equitable and sustainable future with antimicrobial resistance. Lancet 403, 2766–2767 (2023).

  • Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, eaaw8429 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Z. et al. Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. eBioMedicine 90, 104491 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Bogaert, D. et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 31, 447–460.e6 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selma-Royo, M. et al. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding during the first year. Cell Host Microbe 32, 996–1010.e4 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paredes, A. et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 618, 365–373 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caballero-Flores, G. et al. Maternal immunization confers protection to the offspring against an attaching and effacing pathogen through delivery of IgG in breast milk. Cell Host Microbe 25, 313–323.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atyeo, C. & Alter, G. The multifaceted roles of breast milk antibodies. Cell 184, 1486–1499 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, Z. et al. Bifidobacterium animalis subsp. lactis Probio-M8 undergoes host adaptive evolution by glcU mutation and translocates to the infant’s gut via oral-/entero-mammary routes through lactation. Microbiome 10, 197 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnett, D. J. M. et al. Human milk oligosaccharides, antimicrobial drugs, and the gut microbiota of term neonates: observations from the KOALA birth cohort study. Gut Microbes 15, 2164152 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheung, K. Y. et al. Health and nutrition claims for infant formula: International Cross Sectional Survey. BMJ 380, e071075 (2023).

  • Baumann-Dudenhoeffer, A. M., D’Souza, A. W., Tarr, P. I., Warner, B. B. & Dantas, G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat. Med. 24, 1822–1829 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, D. A., German, J. B., Lebrilla, C. B. & Underwood, M. A. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 15, 2192458 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Escamilla, R. et al. Breastfeeding: crucially important, but increasingly challenged in a market-driven world. Lancet 401, 472–485 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Baker, P. et al. The political economy of infant and young child feeding: confronting corporate power, overcoming structural barriers, and accelerating progress. Lancet 401, 503–524 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Stinson, L. F. & Geddes, D. T. Microbial metabolites: the next frontier in human milk. Trends Microbiol. 30, 408–410 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dubois, L. et al. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 32, 1011–1024.e4 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Argaw-Denboba, A. et al. Paternal microbiome perturbations impact offspring fitness. Nature 629, 652–659 (2024).

  • Lawrence, R. J. David the ‘bubble boy’ and the boundaries of the human. J. Am. Med. Assoc. 253, 74 (1985).

    Article 
    CAS 

    Google Scholar 

  • Williams, S. C. P. Gnotobiotics. Proc. Natl Acad. Sci. 111, 1661–1661 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wostmann, B. S. The GERMFREE animal in nutritional studies. Annu. Rev. Nutr. 1, 257–279 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Basic, M. & Bleich, A. Gnotobiotics: past, present and future. Lab. Anim. 53, 232–243 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiebiger, U., Bereswill, S. & Heimesaat, M. M. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: Lessons learned from germfree and gnotobiotic animal models. Eur. J. Microbiol. Immunol. 6, 253–271 (2016).

    Article 
    CAS 

    Google Scholar 

  • Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edwards, J. M. et al. Microbiota are critical for vascular physiology: Germ-free status weakens contractility and induces sex-specific vascular remodeling in mice. Vasc. Pharmacol. 125–126, 106633 (2020).

    Article 

    Google Scholar 

  • Gordon, H. A., Wostmann, B. S. & Bruckner-Kardoss, E. Effects of microbial flora on cardiac output and other elements of blood circulation. Exp. Biol. Med. 114, 301–304 (1963).

    Article 
    CAS 

    Google Scholar 

  • Zhou, D. et al. Microbiota modulates cardiac transcriptional responses to intermittent hypoxia and hypercapnia. Front. Physiol. 12, 680275 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crawford, P. A. et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc. Natl Acad. Sci. 106, 11276–11281 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, R., Waldvogel‐Thurlow, S., Darveau, R. & Douglas, R. Differences in the paranasal sinuses between germ‐free and pathogen‐free mice. Int. Forum Allergy Rhinol. 6, 631–637 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Yun, Y. et al. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS ONE 9, e113466 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodward, B. A Study of the influence of the ambient microflora on the structure of lung alveolar macrophages and an ultrastructural comparison of lung and peritoneal macrophages in germ‐free and conventionally reared mice. J. Morphol. 169, 283–291 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dolma, K. et al. Effects of hyperoxia on alveolar and pulmonary vascular development in germ-free mice. Am. J. Physiol. -Lung Cell. Mol. Physiol. 318, L421–L428 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ashley, S. L. et al. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci. Transl. Med. 12, eaau9959 (2020).

  • Wostmann, B. S. Germfree and Gnotobiotic Animal Models: Background and Applications. (CRC Press, 2020). https://doi.org/10.1201/9780138753320.

  • Al-Asmakh, M. & Zadjali, F. Use of germ-free animal models in microbiota-related research. J. Microbiol. Biotechnol. 25, 1583–1588 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Geissinger, H. D. & Abandowitz, H. M. Scanning electron and light microscopy of the cecum of germ-free and conventional mice. Trans. Am. Microsc. Soc. 96, 254 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khoury, K. A., Floch, M. H. & Hersh, T. Small intestinal mucosal cell proliferation and bacterial flora in the conventionalization of the germfree mouse. J. Exp. Med. 130, 659–670 (1969).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolsega, S. et al. The genetic background is shaping cecal enlargement in the absence of intestinal microbiota. Nutrients 15, 636 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loesche, W. J. Accumulation of endogenous carbohydrate-containing compounds in the cecum of the germfree rat. Exp. Biol. Med. 131, 387–392 (1969).

    Article 
    CAS 

    Google Scholar 

  • McVey Neufeld, K. A., Perez‐Burgos, A., Mao, Y. K., Bienenstock, J. & Kunze, W. A. The gut microbiome restores intrinsic and extrinsic nerve function in germ‐free mice accompanied by changes in calbindin. Neurogastroenterol. Motil. 27, 627–636 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A. & Kunze, W. A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25, 183 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Touw, K. et al. Mutual reinforcement of pathophysiological host‐microbe interactions in intestinal stasis models. Physiol. Rep. 5, e13182 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niimi, K. & Takahashi, E. New system to examine the activity and water and food intake of germ-free mice in a sealed positive-pressure cage. Heliyon 5, e02176 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jervis, H. R. & Biggers, D. C. Mucosal enzymes in the cecum of conventional and germfree mice. Anat. Rec. 148, 591–597 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumi, Y., Miyakawa, M., Kanzaki, M. & Kotake, Y. Vitamin B-6 deficiency in germfree rats. J. Nutr. 107, 1707–1714 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ikeda, M. et al. The differences of the metabolism related to vitamin B6-dependent enzymes among vitamin B6-deficient germ-free and conventional rats. J. Nutr. Sci. Vitaminol. (Tokyo) 25, 131–139 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirayama, K., Uetsuka, K., Kuwabara, Y., Tamura, M. & Itoh, K. Vitamin K deficiency of germfree mice caused by feeding standard purified diet sterilized by.GAMMA.-irradiation. Exp. Anim. 56, 273–278 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishima, E. et al. Germ-free conditions modulate host purine metabolism, exacerbating adenine-induced kidney damage. Toxins 12, 547 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koopman, J. P. in Encyclopedia of Immunology 990–992 (Elsevier, 1998). https://doi.org/10.1006/rwei.1999.0256.

  • Hoces, D. et al. Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle. PLoS Biol. 20, e3001743 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, S. P. & Suk, K. T. Microbial influence on liver regeneration: understanding gut microbiota and hepatic recovery post partial hepatectomy. Hepatobiliary Surg. Nutr. 13, 314–316 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Z., Jiang, N., Xiao, Y., Yuan, K. & Wang, Z. The role of gut microbiota in liver regeneration. Front. Immunol. 13, 1003376 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wostmann, B. S., Pleasants, J. R., Bealmear, P. & Kincade, P. W. Serum proteins and lymphoid tissues in germ-free mice fed a chemically defined, water soluble, low molecular weight diet. Immunology 19, 443–448 (1970).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, C., Hugot, J.-P. & Barreau, F. Peyer’s patches: the immune sensors of the intestine. Int. J. Inflamm. 2010, 1–12 (2010).

    Article 

    Google Scholar 

  • Konjar, Š., Ferreira, C., Blankenhaus, B. & Veldhoen, M. Intestinal barrier interactions with specialized CD8 T cells. Front. Immunol. 8, 1281 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivanov, I. I. et al. Induction of Intestinal Th17. Cells Segmented Filamentous Bact. Cell 139, 485–498 (2009).

    CAS 

    Google Scholar 

  • Schoenborn, A. A. et al. The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells. Gut Microbes 10, 45–58 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macpherson, A. J., McCoy, K. D., Johansen, F.-E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine. J. Exp. Med. 205, 2191–2198 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sprinz, H. et al. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am. J. Pathol. 39, 681–695 (1961).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Sjögren-like lacrimal keratoconjunctivitis in germ-free mice. Int. J. Mol. Sci. 19, 565 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6 (2014).

  • Lu, J. et al. Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS ONE 13, e0201829 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luczynski, P. et al. Adult microbiota‐deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 44, 2654–2666 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luczynski, P. et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 19, pyw020 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, W.-L. et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595, 409–414 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cescon, M. et al. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes 16, 2363015 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627. (2023).

  • De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. 115, 6458–6463 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kabouridis, P. S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimizu, K. et al. Normalization of reproductive function in germfree mice following bacterial contamination. Exp. Anim. 47, 151–158 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Asmakh, M. et al. The gut microbiota and developmental programming of the testis in mice. PLoS ONE 9, e103809 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vahidi, G. et al. Germ‐free C57BL /6 mice have increased bone mass and altered matrix properties but not decreased bone fracture resistance. J. Bone Miner. Res. 38, 1154–1174 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ohlsson, C. et al. Regulation of bone mass by the gut microbiota is dependent on NOD1 and NOD2 signaling. Cell. Immunol. 317, 55–58 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Czernik, P. J. et al. Reconstitution of the host holobiont in germ-free born male rats acutely increases bone growth and affects marrow cellular content. Physiol. Genomics 53, 518–533 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lahiri, S. et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med. 11, eaan5662 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, Y. et al. Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling. Ann. Med. 53, 508–522 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, H. et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Sci. Rep. 6, 31786 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. 101, 15718–15723 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mestdagh, R. et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 11, 620–630 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suárez-Zamorano, N. et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 21, 1497–1501 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. 104, 979–984 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. J. et al. Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice. Exp. Mol. Med. 55, 1820–1830 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uberoi, A. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29, 1235–1248.e8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, G. et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 29, 777–791.e6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tazume, S. et al. Effects of germfree status and food restriction on longevity and growth of mice. Exp. Anim. 40, 517–522 (1991).

    Article 
    CAS 

    Google Scholar 

  • Gordon, H. A., Bruckner-kardoss, E. & Wostmann, B. S. Aging in germ-free mice: life tables and lesions observed at natural death. J. Gerontol. 21, 380–387 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gilbert, J. A. & Neufeld, J. D. Life in a world without microbes. PLoS Biol. 12, e1002020 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olm, M. R. et al. Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science 376, 1220–1223 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 7, 887–894 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter, M. M. et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 186, 3111–3124.e13 (2023).

  • Wu, J., Wang, Q., Wang, D., Wong, A. C. N. & Wang, G.-H. Axenic and gnotobiotic insect technologies in research on host–microbiota interactions. Trends Microbiol. 31, 858–871 (2023).

  • Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 225–IN6 (1967).

    Article 
    CAS 

    Google Scholar 

  • Moreira, D., Le Guyader, H. & Philippe, H. The origin of red algae and the evolution of chloroplasts. Nature 405, 69–72 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, L. et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat. Ecol. Evol. 4, 1213–1219 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gogoi, J. et al. Switching a conflicted bacterial DTD-tRNA code is essential for the emergence of mitochondria. Sci. Adv. 8, eabj7307 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lederberg, J. Infectious History. Science 288, 287–293 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coale, T. H. et al. Nitrogen-fixing organelle in a marine alga. Science 384, 217–222 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boyd, B. M. et al. Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria. Nat. Commun. 15, 4571 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baedke, J., Fábregas‐Tejeda, A. & Nieves Delgado, A. The holobiont concept before Margulis. J. Exp. Zool. B: Mol. Dev. Evol. 334, 149–155 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Margulis, L. & Fester, R. Bellagio conference and book. Symbiosis as Source of Evolutionary Innovation: Speciation and Morphogenesis. Conference-June 25-30, 1989, Bellagio Conference Center, Italy. Symbiosis Phila. Pa 11, 93–101 (1991).

    CAS 

    Google Scholar 

  • Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King, I. L. & Divangahi, M. Training the metaorganism: the microbial counterpart. Cell 184, 574–576 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macpherson, A. J. Do the microbiota influence vaccines and protective immunity to pathogens?: issues of sovereignty, federalism, and points-testing in the prokaryotic and eukaryotic spaces of the host-microbial superorganism. Cold Spring Harb. Perspect. Biol. 10, a029363 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segre, J. A. & Salafsky, N. Hominid superorganisms. Science 353, 350–351 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wenseleers, T. The superorganism revisited. BioScience 59, 702–705 (2009).

    Article 

    Google Scholar 

  • Jefferson, R. Agriculture and the Third World. 1089446492 Bytes. (2019).

  • Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosenberg, E. & Zilber-Rosenberg, I. The hologenome concept of evolution after 10 years. Microbiome 6, 78 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberdi, A., Andersen, S. B., Limborg, M. T., Dunn, R. R. & Gilbert, M. T. P. Disentangling host–microbiota complexity through hologenomics. Nat. Rev. Genet. 23, 281–297 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 55 (2020).

    Article 

    Google Scholar 

  • Vanwonterghem, I. & Webster, N. S. Coral reef microorganisms in a changing climate. iScience 23, 100972 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biget, M. et al. Evaluating the hologenome concept by analyzing the root-endosphere microbiota of chimeric plants. iScience 26, 106031 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suárez, J. & Triviño, V. What Is a hologenomic adaptation? emergent individuality and inter-identity in multispecies systems. Front. Psychol. 11, 187 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zepeda Mendoza, M. L. et al. Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat. Ecol. Evol. 2, 659–668 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, A. K. & Moran, N. A. Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proc. Natl Acad. Sci. 108, 2849–2854 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, G. M. & Moran, N. A. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc. Natl Acad. Sci. 112, 10169–10176 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl Acad. Sci. 104, 8627–8633 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lebreton, F. et al. Tracing the enterococci from paleozoic origins to the hospital. Cell 169, 849–861.e13 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kutschera, U. Darwin–Wallace principle of natural selection. Nature 453, 27–27 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wallace, R. Extending the modern synthesis: the evolution of ecosystems. Nat. Preced. (2010).

  • Gardner, A. The genetical theory of multilevel selection. J. Evol. Biol. 28, 305–319 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, T. A. & Ley, R. E. The role of the microbiota in human genetic adaptation. Science 370, eaaz6827 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreiro, A., Crook, N., Gasparrini, A. J. & Dantas, G. Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172, 1216–1227 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akkaya, M., Kwak, K. & Pierce, S. K. B cell memory: building two walls of protection against pathogens. Nat. Rev. Immunol. 20, 229–238 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

  • Nagashima, K. et al. Mapping the T cell repertoire to a complex gut bacterial community. Nature 621, 162–170 (2023).

  • Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51, 77–89.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rollenske, T. et al. Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature 598, 657–661 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huus, K. E., Petersen, C. & Finlay, B. B. Diversity and dynamism of IgA−microbiota interactions. Nat. Rev. Immunol. 21, 514–525 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moreno-Sabater, A. et al. Intestinal Candida albicans overgrowth in IgA deficiency. J. Allergy Clin. Immunol. 152, 748–759.e3. (2023).

  • Conrey, P. E. et al. IgA deficiency destabilizes homeostasis toward intestinal microbes and increases systemic immune dysregulation. Sci. Immunol. 8, eade2335 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. et al. An overview of host‐derived molecules that interact with gut microbiota. iMeta 2, e88 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herr, A. B., White, C. L., Milburn, C., Wu, C. & Bjorkman, P. J. Bivalent binding of IgA1 to FcαRI suggests a mechanism for cytokine activation of IgA phagocytosis. J. Mol. Biol. 327, 645–657 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Wang, J., Wang, R., Chang, Y. & Wang, X. Gut bacteria induce IgA expression in pituitary hormone-secreting cells during aging. iScience 26, 107747 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: application informed by evolution. Science 368, eaau5480 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jarret, A. et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 180, 50–63.e12 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pierre, J. F. et al. Peptide YY: a Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 381, 502–508 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Unckless, R. L., Howick, V. M. & Lazzaro, B. P. Convergent balancing selection on an antimicrobial peptide in Drosophila. Curr. Biol. 26, 257–262 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Unckless, R. L. & Lazzaro, B. P. The potential for adaptive maintenance of diversity in insect antimicrobial peptides. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150291 (2016).

    Article 

    Google Scholar 

  • Zanchi, C., Johnston, P. R. & Rolff, J. Evolution of defence cocktails: antimicrobial peptide combinations reduce mortality and persistent infection. Mol. Ecol. 26, 5334–5343 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanson, M. A., Grollmus, L. & Lemaitre, B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in. Drosoph. Sci. 381, eadg5725 (2023).

    Article 
    CAS 

    Google Scholar 

  • Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mukherjee, S. & Hooper, L. V. Antimicrobial defense of the Intestine. Immunity 42, 28–39 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McDonough, K. A. & Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol. 10, 27–38 (2012).

    Article 
    CAS 

    Google Scholar 

  • Friedman, E. S. et al. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc. Natl Acad. Sci. 115, 4170–4175 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litvak, Y., Byndloss, M. X. & Bäumler, A. J. Colonocyte metabolism shapes the gut microbiota. Science 362, eaat9076 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. et al. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs. Nature 606, 358–367 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhernakova, D. V. et al. Host genetic regulation of human gut microbial structural variation. Nature 625, 813–821 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl Acad. Sci. 110, 4720–4725 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cani, P. D., Depommier, C., Derrien, M., Everard, A. & de Vos, W. M. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19, 625–637 (2022).

  • Schwerd, T. et al. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol. 11, 562–574 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670. (2022).

  • Bessman, N. J. et al. Dendritic cell–derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science 368, 186–189 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Malmuthuge, N. & Guan, L. L. Noncoding RNAs: regulatory molecules of host–microbiome crosstalk. Trends Microbiol. 29, 713–724 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. et al. The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe 19, 32–43 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Z. et al. Gut microbiota regulate tumor metastasis via circRNA/miRNA networks. Gut Microbes 12, 1788891 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdullah, S. T. et al. Role of circular RNAs and gut microbiome in gastrointestinal cancers and therapeutic targets. Non-Coding RNA Res. 9, 236–252 (2024).

    Article 
    CAS 

    Google Scholar 

  • Lyte, M. & Ernst, S. Catecholamine induced growth of gram negative bacteria. Life Sci. 50, 203–212 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lyte, M. The role of microbial endocrinology in infectious disease. J. Endocrinol. 137, 343–345 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, A. et al. Sexual dimorphism in glucose metabolism is shaped by androgen-driven gut microbiome. Nat. Commun. 12, 7080 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibrahim, A. et al. Colitis‐induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. Int. J. Cancer 144, 3086–3098 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, Z. et al. Estrogen deficiency induces bone loss through the gut microbiota. Pharmacol. Res. 196, 106930 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J.-Y. et al. Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest. 126, 2049–2063 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiller, C. C. et al. Influence of catecholamines on biofilm formation by Salmonella Enteritidis. Microb. Pathog. 130, 54–58 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Asano, Y. et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol.—Gastrointest. Liver Physiol. 303, G1288–G1295 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, D., Kong, Y., Sun, W., Kong, W. & Shi, Y. A dopamine-responsive signal transduction controls transcription of Salmonella enterica serovar typhimurium virulence genes. mBio 10, e02772–18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarracchini, C. et al. Genetic strategies for sex-biased persistence of gut microbes across human life. Nat. Commun. 14, 4220 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, K. et al. Microbiota alters the metabolome in an age- and sex-dependent manner in mice. Nat. Commun. 14, 1348 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayneris-Perxachs, J. et al. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. Microbiome 8, 136 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526–1531 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sen, P. et al. Microbiota and sleep: awakening the gut feeling. Trends Mol. Med. 27, 935–945 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Almand, A. T. et al. The influence of perceived stress on the human microbiome. BMC Res. Notes 15, 193 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dohnalová, L. et al. A microbiome-dependent gut–brain pathway regulates motivation for exercise. Nature 612, 739–747 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thirion, F. et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 15, 1 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 69, 2131–2142 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yannakoulia, M. & Scarmeas, N. Diets. N. Engl. J. Med. 390, 2098–2106 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. 107, 14691–14696 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bourdeau-Julien, I. et al. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome 11, 26 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. A high-fat diet promotes cancer progression by inducing gut microbiota–mediated leucine production and PMN-MDSC differentiation. Proc. Natl Acad. Sci. 121, e2306776121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dohrn, G. Gut microbes linked to fatty diet drive tumour growth. Nature (2024).

  • Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shigehisa, A. et al. Characterization of a bifidobacterial system that utilizes galacto-oligosaccharides. Microbiology 161, 1463–1470 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, R. L. et al. Design of synthetic human gut microbiome assembly and butyrate production. Nat. Commun. 12, 3254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crost, E. H. et al. Mechanistic Insights Into the Cross-Feeding of Ruminococcus gnavus and Ruminococcus bromii on Host and Dietary Carbohydrates. Front. Microbiol. 9, 2558 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie, Q. et al. Targeted modification of gut microbiota and related metabolites via dietary fiber. Carbohydr. Polym. 316, 120986 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez, C. I. et al. Curated and harmonized gut microbiome 16S rRNA amplicon data from dietary fiber intervention studies in humans. Sci. Data 10, 346 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Diet mediate the impact of host habitat on gut microbiome and influence clinical indexes by modulating gut microbes and serum metabolites. Adv. Sci. 11, 2310068 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zinöcker, M. & Lindseth, I. The western diet–microbiome-host interaction and its role in metabolic disease. Nutrients 10, 365 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Latorre-Pérez, A. et al. The Spanish gut microbiome reveals links between microorganisms and Mediterranean diet. Sci. Rep. 11, 21602 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ben-Yacov, O. et al. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 72, 1486–1496 (2023).

  • Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, T. H. et al. Impact of a vegan diet on the human salivary microbiota. Sci. Rep. 8, 5847 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landberg, R. & Hanhineva, K. Biomarkers of a Healthy Nordic Diet—From Dietary Exposure Biomarkers to Microbiota Signatures in the Metabolome. Nutrients 12, 27 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jama, H. A., Beale, A., Shihata, W. A. & Marques, F. Z. The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism? Cardiovasc. Res. 115, 1435–1447 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xue, Z. et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6, e00022–15 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181, 1263–1275.e16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, Z. et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med. 20, 204 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Article 

    Google Scholar 

  • Ismail, I. H. et al. Dietary patterns in childhood and their effect on gut microbiota—an Asian perspective on atopy risk. J. Allergy Clin. Immunol. 146, 1005–1007 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sonnenburg, J. L. & Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falush, D. et al. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582–1585 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thorpe, H. A. et al. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat. Commun. 13, 6842 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, L. et al. The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat. Med. 29, 1750–1759. (2023).

  • Ying, S. et al. The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS ONE 10, e0141842 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y.-D. et al. Greenspace and human microbiota: a systematic review. Environ. Int. 187, 108662 (2024).

    Article 
    PubMed 

    Google Scholar 

  • He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tierney, B. T. et al. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. 9, 1661–1675 (2024).

  • Weersma, R. K., Zhernakova, A. & Fu, J. Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lam, K. N., Alexander, M. & Turnbaugh, P. J. Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. Cell Host Microbe 26, 22–34 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wollein Waldetoft, K., Sundius, S., Kuske, R. & Brown, S. P. Defining the benefits of antibiotic resistance in commensals and the scope for resistance optimization. mBio 14, e01349–22 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bhattarai, S. K. et al. Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption. Sci. Transl. Med. 16, eadi9711 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Antidepressants can induce mutation and enhance persistence toward multiple antibiotics. Proc. Natl Acad. Sci. 120, e2208344120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De La Cuesta-Zuluaga, J. et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care 40, 54–62 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Forslund, S. K. et al. Combinatorial, additive and dose-dependent drug–microbiome associations. Nature 600, 500–505 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sousa, T. et al. On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. J. Pharm. Sci. 103, 3171–3175 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klatt, N. R. et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science 356, 938–945 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023).

  • Wang, D.-R., Wu, X.-L. & Sun, Y.-L. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct. Target. Ther. 7, 331 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J. et al. Effects of microbiota on anticancer drugs: current knowledge and potential applications. eBioMedicine 83, 104197 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein-Thoeringer, C. K. et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat. Med. 29, 906–916 (2023).

  • Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, M.-Z. et al. Gut microbial interactions based on network construction and bacterial pairwise cultivation. Sci. China Life Sci. 67,1751–1762 (2024).

  • Krishnan, N., Csiszár, V., Móri, T. F. & Garay, J. Genesis of ectosymbiotic features based on commensalistic syntrophy. Sci. Rep. 14, 1366 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culp, E. J. & Goodman, A. L. Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host Microbe 31, 485–499 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maree, M. et al. Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms. Nat. Commun. 13, 2477 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, Q. et al. Episymbiotic Saccharibacteria TM7x modulates the susceptibility of its host bacteria to phage infection and promotes their coexistence. Proc. Natl Acad. Sci. 121, e2319790121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamkin, J. & Lavner, J. A. Antagonism and romantic relationships. in The Handbook of Antagonism 269–280 (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-814627-9.00018-9.

  • Clardy, J., Fischbach, M. A. & Currie, C. R. The natural history of antibiotics. Curr. Biol. 19, R437–R441 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnston, L. A. Competitive interactions between cells: death, growth, and geography. Science 324, 1679–1682 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sørensen, M. E. S. et al. The role of exploitation in the establishment of mutualistic microbial symbioses. FEMS Microbiol. Lett. 366, fnz148 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shkoporov, A. N., Turkington, C. J. & Hill, C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat. Rev. Microbiol. 20, 737–749 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morin, M. A., Morrison, A. J., Harms, M. J. & Dutton, R. J. Higher-order interactions shape microbial interactions as microbial community complexity increases. Sci. Rep. 12, 22640 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amit, G. & Bashan, A. Top-down identification of keystone taxa in the microbiome. Nat. Commun. 14, 3951 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Article 

    Google Scholar 

  • Libertucci, J. & Young, V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 4, 35–45 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Newton, W. L., Weinstein, P. P. & Jones, M. F. A comparison of the development of some rat and mouse helminths in germfree and conventional guinea pigs. Ann. N. Y. Acad. Sci. 78, 290–307 (2006).

    Article 

    Google Scholar 

  • Phillips, B. P. et al. Studies on the ameba-bacteria relationship in amebiasis; comparative results of the intracecal inoculation of germfree, monocontaminated, and conventional guinea pigs with Entamoeba histolytica. Am. J. Trop. Med. Hyg. 4, 675–692 (1955).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phillips, B. P. & Wolfe, P. A. The use of germfree guinea pigs in studies on the microbial interrelationships in amoebiasis*. Ann. N. Y. Acad. Sci. 78, 308–314 (2006).

    Article 

    Google Scholar 

  • Lin, T.-L. et al. Gut microbiota dysbiosis-related susceptibility to nontuberculous mycobacterial lung disease. Gut Microbes 16, 2361490 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wahl, A. et al. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat. Biotechnol. 42, 905–915 (2023).

  • Gosmann, C. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46, 29–37 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sulaiman, I. et al. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. Nat. Microbiol. 6, 1245–1258 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, M. et al. Characterization of the human oropharyngeal microbiomes in SARS‐CoV‐2 infection and recovery patients. Adv. Sci. 8, 2102785 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zuo, T., Wu, X., Wen, W. & Lan, P. Gut microbiome alterations in COVID-19. Genomics Proteom. Bioinform. 19, 679–688 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xiao, M. et al. Metatranscriptomic analysis of host response and vaginal microbiome of patients with severe COVID-19. Sci. China Life Sci. 65, 1473–1476 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut 71, 222–225 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yeoh, Y. K. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70, 698–706 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patrier, J. et al. Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults. Crit. Care 26, 300 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDonald, B. et al. Programing of an intravascular immune firewall by the gut microbiota protects against pathogen dissemination during infection. Cell Host Microbe 28, 660–668.e4 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, F. et al. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 20, 323–337 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Li, J., Richards, E. M., Handberg, E. M., Pepine, C. J. & Raizada, M. K. Butyrate regulates COVID-19–relevant genes in gut epithelial organoids from normotensive rats. Hypertension 77 (2021).

  • Zhang, F. et al. Prolonged impairment of short-chain fatty acid and l-isoleucine biosynthesis in gut microbiome in patients with COVID-19. Gastroenterology 162, 548–561.e4 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Nies, L. et al. Altered infective competence of the human gut microbiome in COVID-19. Microbiome 11, 46 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizrahi, B. et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study. BMJ 380, e072529 (2023).

  • McIntosh, C. M., Chen, L., Shaiber, A., Eren, A. M. & Alegre, M.-L. Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6, 96 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swarte, J. C. et al. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci. Transl. Med. 14, eabn7566 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bocci, V. The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspect. Biol. Med. 35, 251–260 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Hara, A. M. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burcelin, R. et al. Metagenome and metabolism: the tissue microbiota hypothesis: Burcelin et al. Diabetes Obes. Metab. 15, 61–70 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Byndloss, M. X. & Bäumler, A. J. The germ-organ theory of non-communicable diseases. Nat. Rev. Microbiol. 16, 103–110 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fucarino, A. et al. The microbiota is not an organ: introducing the muco-microbiotic layer as a novel morphofunctional. Struct. Anat. 1, 186–203 (2022).

    Google Scholar 

  • Chakaroun, R. M., Olsson, L. M. & Bäckhed, F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat. Rev. Cardiol. 20, 217–235 (2022).

  • Valles-Colomer, M. et al. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat. Med. 29, 551–561 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tonelli, A., Lumngwena, E. N. & Ntusi, N. A. B. The oral microbiome in the pathophysiology of cardiovascular disease. Nat. Rev. Cardiol. 20, 386–403 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Violi, F. et al. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat. Rev. Cardiol. 20, 24–37 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Brown, J. M. & Hazen, S. L. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol. 16, 171–181 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyon, J. The lung microbiome: key to respiratory ills? JAMA 317, 1713 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Budden, K. F. et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med. 7, 907–920 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Barcik, W., Boutin, R. C. T., Sokolowska, M. & Finlay, B. B. The role of lung and gut microbiota in the pathology of asthma. Immunity 52, 241–255 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neish, A. S. Microbes in gastrointestinal health and disease. Gastroenterology 136, 65–80 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Sorboni, S. G., Moghaddam, H. S., Jafarzadeh-Esfehani, R. & Soleimanpour, S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin. Microbiol. Rev. 35, e00338–20 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, P., Kazmi, S. A., Jameson, K. G. & Hsiao, E. Y. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28, 201–222 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willyard, C. How gut microbes could drive brain disorders. Nature 590, 22–25 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agirman, G. & Hsiao, E. Y. SnapShot: the microbiota-gut-brain axis. Cell 184, 2524–2524.e1 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qi, X., Yun, C., Pang, Y. & Qiao, J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 13, 1894070 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat. Rev. Endocrinol. 19, 258–271 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hajishengallis, G., Lamont, R. J. & Koo, H. Oral polymicrobial communities: assembly, function, and impact on diseases. Cell Host Microbe 31, 528–538 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuganbaev, T., Yoshida, K. & Honda, K. The effects of oral microbiota on health. Science 376, 934–936 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stacy, A. & Belkaid, Y. Microbial guardians of skin health. Science 363, 227–228 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyauchi, E., Shimokawa, C., Steimle, A., Desai, M. S. & Ohno, H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat. Rev. Immunol. 23, 9–23 (2022).

  • Alcazar, C. G.-M. et al. The association between early-life gut microbiota and childhood respiratory diseases: a systematic review. Lancet Microbe 3, e867–e880 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knauf, F., Brewer, J. R. & Flavell, R. A. Immunity, microbiota and kidney disease. Nat. Rev. Nephrol. 15, 263–274 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Shoubridge, A. P. et al. The gut microbiome and mental health: advances in research and emerging priorities. Mol. Psychiatry 27, 1908–1919 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, L. & Shah, K. The potential of the gut microbiome to reshape the cancer therapy paradigm: a review. JAMA Oncol. 8, 1059 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gowen, R., Gamal, A., Di Martino, L., McCormick, T. S. & Ghannoum, M. A. Modulating the microbiome for Crohn’s disease treatment. Gastroenterology 164, 828–840 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Motta, J.-P., Wallace, J. L., Buret, A. G., Deraison, C. & Vergnolle, N. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 314–334 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, H. et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome 7, 2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knights, D. et al. Rethinking “Enterotypes”. Cell Host Microbe 16, 433–437 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, S. et al. Enterotypes of the human gut mycobiome. Microbiome 11, 179 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willis, J. R. et al. Citizen science charts two major “stomatotypes” in the oral microbiome of adolescents and reveals links with habits and drinking water composition. Microbiome 6, 218 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4 (2012).

  • Adolph, E. F. Early concepts of physiological regulations. Physiol. Rev. 41, 737–770 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cannon, W. B. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Article 

    Google Scholar 

  • Baptista, V. Starting physiology: understanding homeostasis. Adv. Physiol. Educ. 30, 263–264 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, K. J. A. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016).

    Article 

    Google Scholar 

  • Khakisahneh, S., Zhang, X.-Y., Nouri, Z. & Wang, D.-H. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems 5, e00514–e00520 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bongers, K. S. et al. The gut microbiome modulates body temperature both in sepsis and health. Am. J. Respir. Crit. Care Med. 207,1030–1041 (2022).

  • Li, B. et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 26, 2720–2737.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gurven, M. et al. Rapidly declining body temperature in a tropical human population. Sci. Adv. 6, eabc6599 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Protsiv, M., Ley, C., Lankester, J., Hastie, T. & Parsonnet, J. Decreasing human body temperature in the United States since the Industrial Revolution. eLife 9, e49555 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. A widely distributed gene cluster compensates for uricase loss in hominids. Cell 186, 3400–3413.e20 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasahara, K. et al. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 31, 1038–1053.e10 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, R. J. et al. Do thrifty genes exist? Revisiting uricase. Obesity 30, 1917–1926 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, B. S. W. Ancient insights into uric acid metabolism in primates. Proc. Natl Acad. Sci. 111, 3657–3658 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, P. A. et al. Microbiota-modulated CART + enteric neurons autonomously regulate blood glucose. Science 370, 314–321 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328.e19 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, B.-Y. et al. Characteristics and correlations of the oral and gut fungal microbiome with hypertension. Microbiol. Spectr. 11, e01956–22 (2023).

    PubMed 

    Google Scholar 

  • O’Donnell, J. A., Zheng, T., Meric, G. & Marques, F. Z. The gut microbiome and hypertension. Nat. Rev. Nephrol. 19, 153–167 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bushyhead, D. & Quigley, E. M. M. Small intestinal bacterial overgrowth—pathophysiology and its implications for definition and management. Gastroenterology 163, 593–607 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hayase, E. et al. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. Cell 185, 3705–3719.e14 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Q. & Stappenbeck, T. S. Local barriers configure systemic communications between the host and microbiota. Science 376, 950–955 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anhê, F. F., Barra, N. G., Cavallari, J. F., Henriksbo, B. D. & Schertzer, J. D. Metabolic endotoxemia is dictated by the type of lipopolysaccharide. Cell Rep. 36, 109691 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Marshall, J. C. The microbiology of multiple organ failure: the proximal gastrointestinal tract as an occult reservoir of pathogens. Arch. Surg. 123, 309 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berg, R. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 3, 149–154 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, S. et al. CRB1-associated retinal degeneration is dependent on bacterial translocation from the gut. Cell 187, 1387–1401.e13 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Massier, L. et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69, 1796–1806 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anhê, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 17, 403–416 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lasselin, J. et al. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci. Biobehav. Rev. 115, 15–24 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Page, M. J., Kell, D. B. & Pretorius, E. The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress 6, 247054702210763 (2022).

    Article 

    Google Scholar 

  • Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 607, 563–570 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoyles, L. et al. Regulation of blood–brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 9, 235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benson, T. W. et al. Gut microbiota–derived trimethylamine n-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 147, 1079–1096 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34, 581–594.e8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mirji, G. et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7, eabn0704 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, X. et al. Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 25, 1225–1233 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun, C. et al. The microbial metabolite agmatine acts as an FXR agonist to promote polycystic ovary syndrome in female mice. Nat. Metab. 6, 947–962 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trabelsi, M.-S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Molinaro, A. et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat. Commun. 11, 5881 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, P. J. & Newgard, C. B. Branched-chain amino acids in disease. Science 363, 582–583 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 4, e458–e458 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, K. et al. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science 381, eadd5787 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Granton, E. et al. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 187, 1874–1888.e14 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finlay, B. B. CIFAR Humans, & the Microbiome. Are noncommunicable diseases communicable? Science 367, 250–251 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar, A. et al. Microbial transmission in the social microbiome and host health and disease. Cell 187, 17–43 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chong, B. et al. Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. eClinicalMedicine 57, 101850 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindstrom, M. et al. Global burden of cardiovascular diseases and risks collaboration, 1990–2021. J. Am. Coll. Cardiol. 80, 2372–2425 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Global burden of digestive diseases: a systematic analysis of the global burden of diseases study, 1990–2019. Gastroenterology165, 773–783.e15 (2023).

  • Ong, K. L. et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

  • Tran, K. B. et al. The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 563–591 (2022).

    Article 

    Google Scholar 

  • Fink, G., Tediosi, F. & Felder, S. Burden of Covid-19 restrictions: National, regional and global estimates. eClinicalMedicine 45, 101305 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bello, M. G. D., Knight, R., Gilbert, J. A. & Blaser, M. J. Preserving microbial diversity. Science 362, 33–34 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Allsup, C. M., George, I. & Lankau, R. A. Shifting microbial communities can enhance tree tolerance to changing climates. Science 380, 835–840 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raaijmakers, J. M. & Kiers, E. T. Rewilding plant microbiomes. Science 378, 599–600 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reardon, S. Faecal transplants could help preserve vulnerable species. Nature 558, 173–174 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cahan, E. As superbugs flourish, bacteriophage therapy recaptures researchers’ interest. JAMA 329, 781 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayfield, O. W. et al. Structural atlas of a human gut crassvirus. Nature 617, 409–416 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benler, S. et al. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome 9, 78 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F., Aschenbrenner, D., Yoo, J. Y. & Zuo, T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 3, e969–e983 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kong, H. H. & Segre, J. A. Cultivating fungal research. Science 368, 365–366 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, C. M., Desmond-Le Quéméner, E., Gribaldo, S. & Borrel, G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13, 3358 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoegenauer, C., Hammer, H. F., Mahnert, A. & Moissl-Eichinger, C. Methanogenic archaea in the human gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 805–813 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pennisi, E. Survey of archaea in the body reveals other microbial guests. Science 358, 983–983 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borrel, G., Brugère, J.-F., Gribaldo, S., Schmitz, R. A. & Moissl-Eichinger, C. The host-associated archaeome. Nat. Rev. Microbiol. 18, 622–636 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L., Li, A., Wang, Y. & Zhang, Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct. Target. Ther. 8, 35 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bullman, S. The intratumoral microbiota: from microniches to single cells. Cell 186, 1532–1534 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swanton, C. et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 187, 1589–1616 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct. Target. Ther. 9, 15 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blake, S. J., Wolf, Y., Boursi, B. & Lynn, D. J. Role of the microbiota in response to and recovery from cancer therapy. Nat. Rev. Immunol. 24, 308–325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bai, X. et al. Engineering the gut microbiome. Nat. Rev. Bioeng. 1, 665–679 (2023).

    Article 

    Google Scholar 

  • Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Durmusoglu, D. et al. In situ biomanufacturing of small molecules in the mammalian gut by probiotic Saccharomyces boulardii. ACS Synth. Biol. 10, 1039–1052 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selle, K. et al. In vivo targeting of clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio 11, e00019–e00020 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lam, K. N. et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, J. R., Oh, J., Wang, S., Crawford, J. M. & Isaacs, F. J. Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell 185, 1487–1505.e14 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. Engineering consortia by polymeric microbial swarmbots. Nat. Commun. 13, 3879 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, J. M. et al. Twenty important research questions in microbial exposure and social equity. mSystems 7, e01240–21 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oduaran, O. H. et al. Microbiome research in Africa must be based on equitable partnerships. Nat. Med. (2024).

  • Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 135 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sender, R., Fuchs, S. & Milo, R. Are We really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porcari, S. et al. Key determinants of success in fecal microbiota transplantation: from microbiome to clinic. Cell Host Microbe 31, 712–733 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ng, R. W. et al. Revisiting the donor screening protocol of faecal microbiota transplantation (FMT): a systematic review. Gut 73,1029–1031 (2023).

  • Gulati, A. S., Nicholson, M. R., Khoruts, A. & Kahn, S. A. Fecal microbiota transplantation across the lifespan: balancing efficacy, safety, and innovation. Am. J. Gastroenterol. 118, 435–439 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Allegretti, J. R., Mullish, B. H., Kelly, C. & Fischer, M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 394, 420–431 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, T. S. B. et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat. Med. 28, 1902–1912 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, N. T. et al. Timely use of probiotics in hospitalized adults prevents clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology 152, 1889–1900.e9 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Cohen, C. R. et al. Randomized trial of lactin-V to prevent recurrence of bacterial vaginosis. N. Engl. J. Med. 382, 1906–1915 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldenberg, J. Z., Mertz, D. & Johnston, B. C. Probiotics to prevent Clostridium difficile infection in patients receiving antibiotics. JAMA 320, 499 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piewngam, P. et al. Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial. Lancet Microbe 4, e75–e83 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Fagnant, H. S. et al. Orally ingested probiotic, prebiotic, and synbiotic interventions as countermeasures for gastrointestinal tract infections in nonelderly adults: a systematic review and meta-analysis. Adv. Nutr. 14, 539–554 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swanson, K. S. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salminen, S. et al. Author Correction: The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 19, 551–551 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wargo, J. A. Modulating gut microbes. Science 369, 1302–1303 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raffatellu, M. Learning from bacterial competition in the host to develop antimicrobials. Nat. Med. 24, 1097–1103 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renz, H. & Skevaki, C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat. Rev. Immunol. 21, 177–191 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, D. et al. Clostridioides difficile aggravates dextran sulfate solution (DSS)-induced colitis by shaping the gut microbiota and promoting neutrophil recruitment. Gut Microbes 15, 2192478 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yadegar, A. et al. Beneficial effects of fecal microbiota transplantation in recurrent Clostridioides difficile infection. Cell Host Microbe 31, 695–711 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, S. H. et al. Extended follow-up of microbiome therapeutic SER-109 through 24 weeks for recurrent Clostridioides difficile infection in a randomized clinical trial. JAMA 328, 2062 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walter, J. & Shanahan, F. Fecal microbiota-based treatment for recurrent Clostridioides difficile infection. Cell 186, 1087 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sims, M. D. et al. Safety and tolerability of SER-109 as an investigational microbiome therapeutic in adults with recurrent Clostridioides difficile infection: a phase 3, open-label, single-arm trial. JAMA Netw. Open 6, e2255758 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sehgal, K., Cifu, A. S. & Khanna, S. Treatment of Clostridioides difficile Infection. JAMA 328, 881 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA 329, 1356 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garey, K. W. et al. Assessment of quality of life among patients with recurrent clostridioides difficile infection treated with investigational oral microbiome therapeutic SER-109: secondary analysis of a randomized clinical trial. JAMA Netw. Open 6, e2253570 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoruts, A., Staley, C. & Sadowsky, M. J. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat. Rev. Gastroenterol. Hepatol. 18, 67–80 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wu, R., Xiong, R., Li, Y., Chen, J. & Yan, R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J. Autoimmun. 141, 103062 (2023).

  • Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Baumgart, D. C. & Le Berre, C. Newer Biologic and small-molecule therapies for inflammatory bowel disease. N. Engl. J. Med. 385, 1302–1315 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 497–511 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lopetuso, L. R. et al. The first international Rome consensus conference on gut microbiota and faecal microbiota transplantation in inflammatory bowel disease. Gut 72, 1642–1650 (2023).

  • Xin, Y. et al. Fecal microbiota transplantation in the treatment of systemic lupus erythematosus: What we learnt from the explorative clinical trial. J. Autoimmun. 141, 103058 (2023).

  • Yang, R., Chen, Z. & Cai, J. Fecal microbiota transplantation: Emerging applications in autoimmune diseases. J. Autoimmun. 141, 103038 (2023).

  • Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, A. B. et al. Enterococci enhance Clostridioides difficile pathogenesis. Nature 611, 780–786 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santus, W. et al. Mycobiota and diet-derived fungal xenosiderophores promote Salmonella gastrointestinal colonization. Nat. Microbiol. 7, 2025–2038 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neumann, P. E. & Neumann, E. E. General histological woes: definition and classification of tissues. Clin. Anat. 34, 794–801 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Terminology, F. I. C. on A. Terminologia Histologica: International Terms for Human Cytology and Histology (Lippincott Raven, 2008).

  • Aggarwal, N. et al. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem. Rev. 123, 31–72 (2022).

  • Javan, G. T. et al. Human thanatomicrobiome succession and time since death. Sci. Rep. 6, 29598 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasan, N. & Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7, e7502 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dimitriu, P. A. et al. New insights into the intrinsic and extrinsic factors that shape the human skin microbiome. mBio 10, e00839–19 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.